
 
 

  1

Original manuscript for: Journal of Fluid Mechanics, 1994, vol. 265, pp.65-95 
 

Experimental investigation of the flow field of an oscillating  
airfoil and estimation of lift from wake surveys  

By 
J. Panda1 and K.B.M.Q. Zaman 
NASA Lewis Research Center 

Cleveland, OH 44135 
 

Abstract 
      The flow field of an airfoil oscillated periodically over a reduced frequency range, 0≤k≤1.6, is studied 
experimentally at chord Reynolds numbers of Rc = 22,000 and 44,000. For most of the data, the NACA0012 
airfoil is pitched sinusoidally about one quarter chord between angles of attack (α) of 5° and 25°. The cyclic 
variation of the near wake flow field is documented through flow visualization and phase averaged vorticity 
measurements. In addition to the familiar dynamic stall vortex (DSV), an intense vortex of opposite sign is 
observed to originate from the trailing edge just when the DSV is shed. The two together take the shape of the 
cross section of a large `mushroom' while being convected away from the airfoil. The phase delay in the 
shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of 
k. It is observed that the sum of the absolute values of all vorticity convected into the wake over a cycle is 
nearly constant and is independent of the reduced frequency and amplitude of oscillation but dependent on the 
mean α. The time varying component of the lift is estimated in a novel way from the shed vorticity flux. The 
analytical foundation of the method and the various approximations are discussed. The estimated lift hysteresis 
loops are found to be in reasonable agreement with available data from the literature as well as with limited 
force balance measurements. Comparison of the lift hysteresis loops with the corresponding vorticity fields 
clearly shows that the major features of the lift variation are directly linked to the evolution of the large scale 
vortical structures and the phase delay phenomenon. 
  
 
1. Introduction 
     The phenomenon of dynamic stall on airfoils and lifting surfaces in unsteady flow environments has been 
studied experimentally and computationally for many years, both as an important practical problem and a 
challenging fundamental one as well. The phenomenon appears on helicopter rotor blades, rapidly 
maneuvering aircraft, fluttering compressor blades, wind turbines and even fish tails and insect wings. It is 
now well known that the unsteady fluid mechanics of an airfoil pitched above the static stall limit is charac-
terized by the formation of a strong vortex on the suction surface, known as the dynamic stall vortex (a-
bbreviated here as DSV), which is eventually shed into the wake.  Presence of the DSV on the airfoil upper 
surface causes a dramatic increase in the airfoil lift which, however, decreases suddenly when the DSV is 
shed. Overviews of this dynamic stall phenomenon can be found in the papers by McCroskey (1982) and 
Carr (1985).  
 The flow field of an airfoil pitched periodically about a fixed axis is primarily influenced by the 
amplitude (αa), the mean angle (αmean) and the frequency of oscillation (f). Past studies on the subject indicate 
that the last parameter is the most influential. Non-dimensionalized as k = πfc/U∞, the `reduced frequency' 
represents the ratio of two time scales: one imposed by the pitching motion 1/(2πf), and the other by the free 
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stream velocity and the airfoil chord (conventionally half the chord is used), c/2U∞. Most of the previous ex-
perimental (e.g. Carr et al. 1977; Leishman 1990) and computational (e.g., Mehta 1978, Wu et al. 1987, 
Visbal and Shang 1988) studies on the phenomenon are confined to low values of k (<0.4). Small amplitude 
pitching motion at very high k has been studied by Koochesfahani (1987), among others, but the small 
amplitude (±4°) apparently precluded the possibility of dynamic stall. Low Reynolds number studies of an 
airfoil undergoing combined oscillating and translating motion by Ohmi et al. (1990, 1991) also covered a 
high range of k (0.63 - 6.3). At high k they observed vortex formation due primarily to airfoil oscillation 
rather than translation; the vortical structure in the wake was found to be dependent on both k and amplitude 
of oscillation. However, the experimental part of their study was limited to flow visualization only. Gad-el-
Hak and Ho (1986) also covered a wide range of k (0.2 to 3.0); but the experiment, which involved an airfoil 
of small aspect ratio to study three-dimensional effects, was again limited to flow visualization only.  
 Most previous flow visualization studies focused on the formation and evolution of the DSV over the 
airfoil upper surface. In comparison, the structure of the downstream wake was addressed only in a few 
experiments. An understanding of the wake structure originating from the dynamic stall process is important 
for the analysis of more complex flows, e.g., in machinery involving rows of blades (Cumpsty 1989). Robin-
son et al. (1986) observed the formation of a `trailing edge vortex' and a `tandem structure' in the wake of an 
oscillating airfoil. Gad-el-Hak and Ho (1986) also observed the formation of additional vortices due to the 
motion of the trailing edge. They observed that the complex flow field of an oscillating airfoil results 
primarily due to the mutual induction between the DSV and the `trailing edge shedding vortex'. In addition 
to the DSV, Ohmi et al. (1991) also observed vortical structures forming near the trailing edge whose 
strength depended on the velocity of the trailing edge and hence on the location of the pitch axis. In the early 
stages of the present study it became quite clear that the `trailing edge vortex' (TEV) could be as intense as 
the DSV. However, the role of the TEV, in comparison to that of the DSV, in the dynamics of the wake as 
well as in the unsteady forces exerted on the airfoil had remained unclear.  
 The wealth of data from the NASA Ames experiments (McAlister et al. 1978, 1982; Carr 1977) 
primarily focused on the unsteady forces experienced by the airfoil. This is also the case with several other 
experiments providing quantitative data (e.g., Leishman 1990). In only a few experiments were attempts 
made to measure the flow field and its cyclic variation. The vorticity distribution in the wake was measured 
by Mathioulakis et al. (1985) and by Booth (1987), but the measurements were limited in scope. The 
periodic flow provides an excellent opportunity to apply the phase-averaging technique in order to map the 
flow field and its variation with the oscillation phase. Such data could be quite helpful in computational 
studies of the subject and provide further insight into the mechanisms of the complex flow under 
consideration. 
    The general issues brought forth in the foregoing provided the motivation for the present study. The 
experiment was initiated as a part of our continuing research on control of separated flows over airfoils and 
blades (Rice and Zaman 1987; Zaman, McKinzie and Rumsey 1989). The objective at this stage has been 
fundamental in scope, to advance the knowledge in the area, maintain in-house expertise, and aid in com-
putational efforts. Initially, detailed phase-averaged flow field measurements and flow visualization were 
carried out for specific cases of airfoil oscillation. These results have been summarized in a conference paper 
(Panda and Zaman 1992). Only the highlights of these results are included here.  
 During the analysis of the wake vorticity data, it occurred to us that the unsteady lift on the airfoil can 
be estimated from the vorticity flux shed into the wake. A detailed discussion of the analytical foundation of 
the method and the various approximations involved is deferred to a later section in the text. In short, the 
idea follows from the principle that the lift force acting per unit length of a pair of parallel, counter-rotating 
vortices of circulation Γ and -Γ, separated by a distance x, is equal to the rate of change of the associated 
impulse (Von Karman and Burgers 1943; Bisplinghoff et al. 1955); force = d/dt(ρxΓ). For the steady flow, 
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the vortex pair is constituted by the `starting vortex system' and the `bound vortex' around the airfoil, and the 
above equation leads to the familiar Kutta-Joukowski theorem, L = ρU∞Γ. For the unsteady case, the shed 
vortices of circulation δΓ in time δt should, according to Kelvin's theorem, correspond to an equal and 
opposite change in the circulation (-δΓ) around the airfoil. By measuring δΓ from the vorticity flux in the 
wake and an average convection velocity Uconv for the vortices, the change in the lift in time δt could then be 
estimated as δL = ρUconvδΓ. The measurement and the choice of Uconv are discussed later in the text. The lift 
variation over the oscillation cycle, and hence the lift hysteresis loop, was thus constructed. The method 
produced lift hysteresis loops that had remarkable similarities with previous measurements (McAlister et al. 
1982). 
 The method was attractive because the lift was obtained entirely from the wake survey. 
Determination of the forces on an oscillating airfoil is not an easy task. Force balance measurements can 
suffer from interference from structural resonances and static pressure distribution measurements can suffer 
from spatial resolution and sensor response limitations. 
 Subsequently, the analytical foundation of the method was studied further. Alternate formulations, 
due to Theodorsen (1935) and in the format of the analysis of Wu (1981), were considered. There is also a 
`non-circulatory' component of the unsteady lift due to the inertia of the fluid moving with the oscillating 
airfoil, which was also considered following Theodorsen's analysis. The details of these are discussed in 
section 4. Unfortunately, due to experimental limitations, the lift hysteresis loops for the dynamic stall cases 
could not be measured directly for comparison. Only limited results could be obtained with a force balance 
for a case at a very low k, with αmean = 0°, which involved smaller amplitude force variation. The problem 
faced in this connection will be described in the text, but as will be shown, the lift variation obtained from 
the wake survey compared quite well with the direct measurement for this particular case. 
 The aspect of unsteady lift estimation from the wake survey constitutes a major part of the present 
paper. Obtaining the lift hysteresis loop from the vorticity data also provided a unique opportunity to relate 
the various aspects of the lift variation directly to the vortical structures. In the following, the experimental 
procedure is first described in section 2. The flow visualization data, obtained by smoke-wire and smoke 
injection techniques, are discussed in section 3.1. The phase-averaged, span wise component of vorticity 
<ωz> (x,y,t), measured without invoking the Taylor hypothesis, are discussed in section 3.2. Spatial distri-
bution of <ωz> (x,y) for fixed t and fixed k, and temporal distribution of <ωz> (y,t) for fixed x and different k 
are presented. The latter data are used to estimate the lift hysteresis loops. Section 4 is devoted to the lift 
calculation procedures and results. The main conclusions are then enumerated in section 5. 
 
2. Experimental Procedure 
 The experiments were carried out in a low speed wind tunnel, the details of which have been 
described elsewhere (Zaman, McKinzie and Rumsey 1989). A two-dimensional model of a NACA0012 
airfoil with 10.2 cm chord and an aspect ratio of 7.5 were mounted horizontally at the center (mid-height) of 
the test section (figure 1a). The airfoil was supported at the two ends by two 0.635 cm diameter rods each of 
which passed through a pair of cylindrical bearings housed in the tunnel walls. The pitching mechanism es-
sentially consisted of a crank and a connecting-rod, together with a flywheel, to oscillate a lever arm. The 
lever arm (not visible in figure 1a) oscillated an output shaft which in turn was connected to one of the airfoil 
support rods via a flexible coupling. The oscillation amplitude was adjusted by changing the crank radius, 
and the oscillation frequency was adjusted by varying the motor rpm. The entire pitching mechanism was 
installed in a steel frame which was structurally isolated from the tunnel and secured to the vibration isolated 
bed plate of the test cell. 
 The measurements were carried out using a crossed hot-wire probe. The probe could be traversed in 
the streamwise (x) direction through a longitudinal slot in the test section floor and up and down in y for a 
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given x, through an automated computer controlled traversing mechanism. The co-ordinates x and y are 
referenced to the airfoil trailing edge at 0° angle of attack (figure 1b). All measurements reported are for the 
x-y plane at the mid-span location. The assumption of two-dimensionality is implicit in the investigation; 
data documenting the two-dimensionality of the flow field have been presented by Panda and Zaman (1992). 
The maximum blockage to the flow occurring at αmax = 25° was 8.5%. The probe movement, data acquisition 
and analysis were done by a MicroVAX 3300 computer. 
 For all data presented, the airfoil was oscillated sinusoidally about the one quarter chord location. An 
optical pick-up mounted on the driving motor shaft was used to provide the reference signal for phase 
averaging. Experiments were conducted at chord Reynolds numbers Rc = 22,000 and 44,000. Experiments 
for k ≤ 0.4 were typically done at the higher Rc and for higher k at the lower Rc. For most of the data the 
angle of attack was nominally varied as α = 15° + 10°Sin(2πt/T), where T (= 1/f) is the period of oscillation. 
Limited experiments were conducted for oscillation amplitudes (αa) of 4.2°, 7.2° and 14.1° with αmean ≈ 15°, 
and for α = 0° + 7.2°Sin(2πt/T). In the following, the suffix "u" is used to indicate upstroke when α is 
increasing and "d" is used to indicate down stroke when α is decreasing.  
 For the smoke-wire flow visualization technique, a 0.005 inch nichrome wire was placed vertically 
either upstream of the airfoil or just downstream of the trailing edge. A flash unit was used to illuminate the 
smoke streaks which were photographed using a 35mm camera. Control of the smoke-wire operation was not 
fine enough to produce photographs at desired values of α. For some earlier photographs a small rod, marked 
every .25 inch by white dots, was placed downstream of the trailing edge. The position of the airfoil trailing 
edge relative to the marker determined the approximate angle of attack. The direction of motion was inferred 
from reviewing a large ensemble of photographs. For later experiments the signal from a phototransistor, 
activated by the camera flash, was compared with the reference optical pick-up signal for determining α 
more accurately. Limited flow visualization was done using a smoke-injection technique. Cigar smoke was 
introduced through a small port on the pressure surface, 1/8th chord from the leading edge and 1/3rd span 
away from one end. Only a small amount of smoke was injected to avoid producing a smoke jet. 
 As stated before, direct measurement of forces on the oscillating airfoil turned out to be difficult. 
Static pressure distribution measurement was not attempted because pressure transducers small enough to be 
fitted in the airfoil model yet having the required sensitivity for the low velocity range of operation were 
unavailable. A force balance, using load cells (Zaman and McKinzie 1991), was used to measure steady lift 
variation with α. The same balance was tried in an effort to measure the unsteady forces for the oscillating 
cases. However, harmonic distortion of the output signal became a problem; typically a harmonic near the 
structural resonance would become large especially at higher oscillation frequency. That the structural 
resonance was being excited became obvious when the stiffness of the support system was changed; this 
would result in a different harmonic (of the oscillation frequency) to become more prominent. For the αmean = 
15° case, the force changes were large as the airfoil went in and out of stall and the harmonic distortion was 
severe even at very low values of f. With αmean = 0° and smaller amplitude (αa = 7.2°), the distortion was 
deemed minimal below an oscillation frequency of about 1 Hz. For such a case the lift variation with α was 
measured and compared with the wake survey results as will be presented in section 4.2.  
 
3. Experimental results 
  
3.1  Flow visualization  
 Figure 2 shows a sequence of photographs at various phases of the oscillation cycle, for k = 0.2, α = 
15°+10°Sin(2πft) and Rc = 44,000. The flow is from left to right. The marker with white dots is visible near 
the trailing edge. Frames (a) to (f) show phases when the angle of attack (α) is increasing (upstroke) and 
frames (g) to (j) show phases when α is decreasing (down stroke). As α increases, a clockwise vortex forms 



 
 

  5

on the airfoil surface (frame d). This is the "dynamic stall vortex" as referred to by previous researchers. 
With further increase in α, the DSV moves towards the trailing edge. When it reaches the trailing edge, a 
counter-clockwise vortex starts to form near the trailing edge (frame f). This vortex becomes clearer in frame 
(g) and can be seen more clearly in figure 3. The `trailing edge vortex' (TEV) grows quickly beneath the 
DSV (frames f and g) and lifts the latter from the airfoil upper surface. The DSV and the TEV combine to 
form a structure whose cross section looks like a mushroom. The `mushroom' structure evolves, moves 
upward and increases in size as it convects downstream (Frames h, i and j). In frame (i), at about 2½ chords 
from the trailing edge, its transverse extent is already very large and measures about 3 chords. After the 
passage of the `mushroom' structure, frames (j) and (a) indicate the passage of a few smaller vortices before 
flow reattachment takes place.  
 Literature on the oscillating airfoil problem addresses the dynamic stall vortex in detail and points to 
it as the reason for high lift; however, the trailing edge vortex and the `mushroom' structure have remained 
relatively unnoticed. As stated in section 1, such structures were observed by only a few, e.g. Robinson et al. 
(1986). The intense TEV and the enormous `mushroom' structure, which occur periodically at the oscillation 
frequency, could be quite significant in blade vortex interaction and aerodynamic noise generation especially 
in configurations involving rows of blades. 
 Figure 3 shows photographs of the DSV and the TEV when the latter has just formed. The smoke-
wire photographs of frames (a) and (b) are for Rc = 22,000 and the smoke injection photograph of frame (c) 
is for Rc = 44,000. In (a) only the outline of the two vortices can be seen when the smoke wire is located 
upstream. The TEV appears unambiguously in (b) when the smoke wire is located just downstream of the 
trailing edge. The strong reverse flow at this location, and instant, pulls the smoke upstream and the cores of 
the two vortices are thus marked. Frame (c) is obtained by smoke injection from a port 1/8th chord away 
from the leading edge. Although the smoke is injected on the pressure surface, the DSV on the suction 
surface entrains most of the smoke. By analyzing several photographs, it is found that during the formation 
of the DSV, the stagnation point is located on the pressure surface downstream of the smoke injection port. 
Therefore, the injected smoke wraps around the leading edge and marks the DSV. When the TEV matures, 
as is the case for figure 3(c), the stagnation point moves back towards the leading edge and some smoke 
travels along the pressure surface to mark the TEV.  
 The photographs of figure 3 demonstrate the formation of the TEV. It appears that when the DSV 
reaches the trailing edge, the associated low pressure rapidly pulls fluid with anti-clockwise vorticity from 
the pressure surface causing the formation of the TEV. While the DSV dwells on the suction surface over a 
large part of the oscillation cycle, the passage of the TEV takes place within a much smaller fraction of the 
cycle. It will be shown later that the formation of the TEV causes a large oscillation in the lower branch of 
the hysteresis loop of the Cl versus α variation. Although initially small in size, the TEV grows to a large 
vortex when shed into the wake. The TEV is thrust against the DSV as they move into the wake. The two 
together pull fluid from the lower side of the flow field and take the appearance of the `mushroom'.  
 
Effect of reduced frequency: Flow visualization photographs for various k have been shown by Panda and 
Zaman (1992) and these will not be repeated here. These photographs show that at very low k (≤0.05) the 
DSV and the TEV are not clearly visible and the flow field appears to be in a quasi-steady state. Wake 
velocity spectra at such low k (in the cited reference) show the dominance of the bluff body shedding that 
would have occurred if the airfoil were held at the maximum angle of attack. As k is increased above 0.1, the 
unsteady effects become prominent and the DSV, the TEV and the `mushroom' structure become clear. At k 
= 0.2 the sequence of vortex formation is such that the DSV and the TEV leave the trailing edge together, 
and this is followed by the shedding of smaller vortices. As k is increased to about 0.4 a small clockwise 
vortex rolls up on the upper surface and is shed in the wake before the dynamic stall vortex, while other 
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smaller vortices are suppressed. McAlister and Carr (1979) observed this smaller vortex preceding the DSV 
and called it the "shear layer vortex".  
   With further increase in k, a significant difference in the wake structure becomes evident. Figure 4 
shows visualization photographs for k = 0.8 and 1.6, each for three phases of the oscillation cycle. It can be 
seen that while the `mushroom' structure is still upright at k = 0.8, it appears upside down at k = 1.6. Relative 
locations of the various vortices for these two cases are sketched in figure 5. At the lower k, the DSV is shed 
before the TEV and both of them move upwards in positive y. On the other hand, at k = 1.6, the TEV is shed 
earlier than the DSV and the resulting `inverted mushroom' remains in the same horizontal plane containing 
the pitch axis. 
  An expected trend with increasing k is the decrease in the spacing (wavelength) of the vortices in the 
wake. For k = 0.2 the spacing is estimated to be more than 10 chords while for k = 1.6 it decreases to 1.5 to 2 
chords. An interesting effect of varying k is the resulting phase delay in the shedding of the DSV. From 
photographs similar to those for k = 0.2 (figure 2), it is observed that the DSV starts to nucleate at about α = 
8° during the upstroke. The time elapsed until the airfoil reaches α = 25° is enough in this case for the DSV 
to move to the trailing edge. However, when k is increased the time needed by the DSV to form, grow and 
move to the trailing edge becomes larger compared to the time taken by the airfoil to complete the upstroke. 
At k = 0.8 this time is equal to the oscillation period and thus the shedding occurs at the end of the down 
stroke. A further increase in k, to say 1.6, causes two DSVs, one that has started to grow at the leading edge 
and one left from the previous cycle near the trailing edge, to reside on the airfoil suction surface simulta-
neously. The latter is shed in the upstroke part of the cycle. The occurrence of multiple vortical structures on 
the suction surface at high k has also been observed by Ohmi et al. (1991). 
 Figure 6 shows a plot of the angles of attack and the phase (2πft) at which the center of the DSV is 
approximately above the trailing edge before it is shed into the wake, for various k. The values of α and 2πft 
are related by α = 15° + 10°sin(2πft). Each data point is an estimate from several photographs similar to 
those shown in figure 2. Within the uncertainty of the estimation, the variation appears to be nearly linear. 
The solid line represents data of McAlister et al. (1978) for the same oscillation condition but for a much 
higher Reynolds number (2.5x106). The latter data represent the instants when the suction peak near the lead-
ing edge collapses. Good agreement of these data with the present result, within the k-range covered, 
indicates that the phase delay phenomenon for comparable airfoils may be essentially independent of 
Reynolds number. That Reynolds number is of secondary importance has been noted by previous 
researchers, e. g. McCroskey (1982). It is noteworthy here that McAlister et al. also showed that leading 
edge modification, such as by use of a boundary layer trip, can significantly alter the phase delay characteris-
tics. The delay in shedding of the DSV has a significant effect on the lift experienced by the airfoil at various 
k. This will be discussed later in section 4. 
 
3.2 Flow field measurements 
 The axial and transverse velocity components, ensemble averaged over many oscillation cycles, were 
measured in the wake as well as on the suction side of the airfoil outside the region covered by the pitching 
motion. The signals from the crossed hot-wire probes and the reference optical pick-up signal (section 2) was 
stored in a digital computer. The data were acquired at several x-stations, and at each x-station for several 
transverse locations (y). These were post-processed to obtain the phase-averaged distributions of <u> and 
<v>. Typically the averaging was done over 80 cycles. The span wise vorticity component was given by  

y
>u< - 

x
>v< =)  τy, (x, >ω< z ∂

∂
∂

∂  

which was non-dimensionalized as, <ωz>* = <ωz>c/U∞. 
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 The distributions of <ωz>* for six phases are shown in figure 7 for k = 0.2; the instantaneous values 
of α are indicated. For k = 0.2, the distance through which the flow structures convect downstream in a peri-
od of oscillation is much larger than that covered by the measurement domain. Hence, each frame shows the 
wake structure for a small fraction of the `wavelength'. The data acquisition rate was chosen such that the 
phase-averaged distributions were computed for 50 time steps per cycle. Data for six time steps, capturing 
the essential features of the vortical structures, are shown and further data including the corresponding <u>- 
and <v>-distributions can be found in the reference, Panda and Zaman (1992). Note that the phases for the 
different frames in figure 7 are not at equal intervals. The measurement domain was divided into two parts; 
one over the suction surface and one downstream in the wake. Since results from the two sets are patched 
together there is some mismatch at the interface. The mismatch is believed to be mainly due to a slight phase 
drift between the two sets of measurements. 
 During the initial part of the cycle, as α is increased, the measurement region is relatively quiet and 
large vortices are absent. The wake region is marked by clockwise vorticity above the trailing edge and 
counter-clockwise vorticity below it. As the angle of attack is increased above 8°, a small vortical region is 
observed to nucleate near the airfoil quarter chord and grows rapidly with accumulation of positive vorticity. 
The nucleation of this vortical region over the airfoil is accompanied by an interesting change in the wake 
vorticity distribution. The negative vorticity in the lower part of the wake remains as is but the positive 
vorticity in the upper part of the wake depletes dramatically (e.g., at α = 20.7°u). The positive vorticity, 
generated on the airfoil suction surface which otherwise would have shed into the wake, starts to accumulate 
leading to the formation of the dynamic stall vortex. 
 Increasing α above about 18° causes a large portion of the accumulated vorticity to move towards the 
trailing edge. This represents the dynamic stall vortex and is marked as V1 in figure 7. The shedding of the 
DSV, generation of the TEV (V2) and the `mushroom' structure, and the subsequent formation of the smaller 
vortices observed in the vorticity data match well with the sequence observed with the flow visualization 
pictures. It is interesting to note that each of the clockwise vortices (V1, V3, V5) is followed up by a coun-
ter-clockwise vortex (V2, V4, V6). Therefore, the wake contains a series of clockwise and counter-clockwise 
vortices the strongest pair is made of the DSV (V1) and the TEV (V2).  
 The streamwise convection velocity of the different vortices could be calculated from the detailed 
space-time vorticity data. This was done by tracking the centers of the individual vortices over successive 
time steps. The convection velocity, obtained thereby, was somewhat lower for the larger vortices and also 
when the vortices were closer to the airfoil. Based on these data an average streamwise convection velocity 
Uconv/U∞ = 0.6 was determined for the case of figure 7. This value was cross-checked by measuring the phase 
velocity at the fundamental about the streamwise station x/c = 0.3. The value Uconv/U∞ = 0.6 was also found 
to be representative even when k was varied for the oscillation case under consideration. However, it 
changed considerably with variation of αa and αmean. For example, Uconv/U∞ = 0.8 was measured for the case 
α = 0° + 7.2Sin(2πft). These values of Uconv are used in the lift estimation procedure discussed in the next 
section. 
 As indicated before, a crossed hot-wire probe was used to measure the velocity components after 
going through a standard yaw calibration. There are some errors in these measurements, especially due to 
hot-wire rectification during instants of large flow angularity and flow reversal. There is no easy way to 
assess the errors accurately and the exact extent of the errors in <u> and <v> measurements have remained 
unknown. However, an idea about the magnitude of the errors can be obtained by checking continuity at 
each measurement point. The departure of the quantity (∂<u>/∂x + ∂<v>/∂y) from zero, representing the 
departure from satisfying continuity, can be considered to be an indicator of the error in the measurement. 
Figure 8 shows contours of this quantity corresponding to three phases of figure 7. The 
nondimensionalization and the contour levels are the same as in figure 7. As expected, the measurement 



 
 

  8

error is found to be the largest on the upper surface when the DSV forms and is accompanied by strong 
reverse flows. In the wake, sufficiently far away from the airfoil, however, the errors are clearly minimal. 
Only during the passage of the strong vortices (e.g., 23.6°d case), do some errors occur due to large flow 
angularity. These measurements in the wake can be compared with similar measurements for free jets, e.g. of 
Zaman and Hussain (1981). The measurement errors on the outer edges of a jet are large because there is no 
forward velocity in the ambient and the passage of the vortical structures invariably induce reverse flow. In 
comparison, even the lowest velocity in the center of the wake is a large fraction of U∞ and thus the vortical 
structures seldom induce reverse flow (except very near the airfoil). The wake flow measurements are thus 
relatively free from hot-wire errors.  
 Two-dimensionality of the flow field was checked through velocity measurements at various span 
wise (z) stations for constant x and y; these data have been reported by Panda and Zaman (1992). The phase-
averaged velocity traces are quite similar indicating a reasonable two-dimensionality of the flow field. Note 
that the aspect ratio of the wing was 7.5 and all measurements reported in this paper were done at midspan 
and close to the trailing edge. 
 
Temporal distributions of <ωz>: Since the vorticity measurement via the spatial data acquisition technique 
involved extensive time and effort, such measurements were performed for only one case as described in the 
preceding. In order to further study the effect of various parameters, measurements of <ωz> (y,t) were 
performed at a fixed x-station (x/c = 0.3, if not mentioned otherwise) covering a complete period of oscil-
lation, 0≤t/T≤1. The term ∂<v>/∂x in the expression for <ωz> was evaluated by measuring <v> at three 
closely spaced x-stations with x/c = 0.3 being the middle one. Central differencing provided ∂<v>/∂x(y,t) 
while the term ∂<u>/∂y(y,t) was evaluated by least squares fitting of the <u>(y,t) profiles. (It is possible to 
simplify the measurements and obtain ∂<v>/∂x via the Taylor hypothesis. This would involve measurement 
of <v> at only one x-station as a function of time, and calculation of ∂<v>/∂x = -(1/Uconv)∂<v>/∂t which, of 
course, would provide only an estimate of ∂<v>/∂x; Zaman and Hussain 1981). Profiles of <ωz>, obtained 
from the two gradients, were measured typically for 24 y-stations covering   -.75≤y/c≤1.0. Non-uniform y-
steps were used to provide adequate resolution in the center of the wake.  
 The <ωz>(y,t) data are later used to evaluate the unsteady lift. Figure 9 shows the <ωz>* (y,t) distribu-
tions for the two cases described in the figure caption. For these two sets of data a detailed evaluation of the 
lift hysteresis loops will be performed, as will be elaborated shortly. Figure 9(b) represents a dynamic stall 
case, the subject of the paper, for k = 0.16. Figure 9(a) shows data for αmean = 0° and αa = 7.2°, a case chosen 
for which force balance measurements could be performed so that the lift variation estimated from the 
vorticity data could be compared directly. For the latter case, because of the small mean angle and small 
amplitude of oscillation, the vorticity distribution shows only a mild undulation. In comparison, the 
variations are large and the vorticity is distributed in lumps for the dynamic stall case in figure 9(b). The 
temporal distributions appear quite different from the spatial distributions of figure 7 (the temporal 
distribution for k = 0.2, to be shown later, is not much different from that for k = 0.16). This is mainly due to 
different scaling of the abscissa. While only a fraction of the `wavelength' is captured in figure 7, figure 9(b) 
shows a full `wavelength'. Differences between the spatial and the temporal distributions are also expected 
because the flow at the measurement station is still evolving and is far from a case of `frozen flow' (Zaman 
and Hussain 1981). A scrutiny of the data of figure 9(b) identifies the DSV and the TEV. The former is the 
concentrated lump of positive vorticity between the points II and III; the latter is the concentrated negative 
vorticity between the points III and IV. The successive lumps of vorticity (on the right of the TEV) represent 
the vortices shed later. The measurement errors for these data were also estimated using the continuity 
equation as described earlier. The largest errors were of similar magnitude as shown in Figure 8 (in the 
wake) and occurred generally at the interface of the DSV and the TEV.  
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4. Estimation of unsteady lift from the vorticity data 
4.1 Analysis 
 As stated in section 1, the unsteady lift, L(t) can be divided into two components; `non-circulatory' LNC(t) 
and `circulatory' LC(t) (Bisplinghoff et al. 1955). The former has been alternatively referred to as the `virtual 
mass effect' or the `acceleration reaction' term (Batchelor 1967). This is dependent on k and can be 
negligible at small values of k. The latter component is, of course, due to the vortical flow arising from the 
airfoil surface.  
 
Non-circulatory part:  Theodorsen (1935) provided an analysis for this component of the lift for pitching as 
well as plunging motion of a flat plate based on the solution of the small disturbance potential equation (also 
see Bisplinghoff 1955). For pitching motion about the one-quarter chord point the expression reduces to  

 ),α 
4
c + α U( 

4
c  πρ = (t) L

2

NC &&&∞  

 

where  and are the angular velocity and acceleration, respectively. With  α& α&&

   t)f  π2 (Sin  α + α = (t) α amean

 

the non-circulatory component of the lift coefficient becomes 

 t)).f  π2 (Sin  
2
k -  t)f  π2 ( Cosk  ( α π = (t) Cl

2

aNC  

A few observations can be made from the above equation.  First, ClNC increases with k, and becomes the 
dominant component at large k for a given flow condition. Second, ClNC is linearly dependent on the 
amplitude (αa) but is independent of the mean angle (αmean). Third, the net change of ClNC over a complete 
period of oscillation is zero. Finally, ClNC at a given α is different between the upstroke and the down stroke 
which yields a hysteresis loop in the ClNC versus α curve. 
 The decomposition of the total lift into the two components rests on linear assumptions allowing the 
superposition. When large vortices are present, and in the high k-range, nonlinear effects are expected. 
However, for small values of k, considered mainly in the present paper, the noncirculatory component can be 
negligible and the lift variation arises primarily due to the circulatory component.  
 
Circulatory part: It is the circulatory component which is estimated from the vorticity flux in the wake. Let 
us begin with a brief review of the method to determine lift for a steady airfoil. If we consider an impulsively 
started flow over a fixed airfoil, a `starting vortex complex' is created which convects away from the airfoil. 
Once the steady state is reached, the net amount of vorticity shed into the wake over a finite time is zero and 
there is a constant circulation around the airfoil. This latter circulation associated with the `bound vortex', 
according to Kelvin's theorem, is equal and opposite to that of the `starting vortex complex'. As mentioned in 
section 1, the force acting per unit length of a pair of counter-rotating vortices of circulation +Γ and -Γ 
separated by a distance x is given by 
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dt
d = Force  

 

For the steady airfoil, the `starting vortex complex' moves away from the airfoil at the free stream velocity, 
so that dx/dt = U∞, and this leads to the expression for the steady lift, L = ρU∞Γ. 
 For the unsteady case of an oscillating airfoil, there is also a `starting vortex complex' shed before the 
periodic flow is established. However, the airfoil continues to shed an unbalanced positive or negative 
vorticity and the circulation of the `bound vortex' varies periodically with the oscillation. If within a finite 
time, δt, the circulation around all vortices shed into the wake is -δΓ, then by Kelvin's theorem this amount 
should be equal and opposite to the change in the circulation δΓ of the `bound vortex' occurring within the 
same time. At any instant the shed vorticity in the wake with circulation -δΓ and the corresponding change in 
the `bound vortex' δΓ, can be thought of as forming a counter-rotating vortex pair in which the vortices are 
moving away from each other at a convection velocity Uconv; Uconv is usually smaller than U∞. Therefore, for 
the incompressible flow under consideration, the change in the lift in time δt can be estimated as 

  . δΓ U ρ = Lδ convc

 

 The change in the circulation δΓ can be found by considering the fixed path ABCD, which encloses 
the airfoil, as shown in figure 1b. For a sufficiently large path, it is reasonable to assume that all vortical 
fluid is convected across the boundary CD only. For the two-dimensional, incompressible flow under consid-
eration the time rate of change of circulation around the path ABCD is obtained, for example, from equation 
5.25 of Potter and Foss (1982) as 
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By neglecting the contribution from the viscous term, which in the wake is smaller than the convection term 
by the order of the Reynolds number, one gets 

 .dy  ωu   - = 
dt
dΓ
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Therefore, one can write 

.dy  ωu   U ρ - = 
dt

dL
zCDconv

c ∫  

Substituting ξ1(t) = ∫CDuωzdy and integrating from time t = 0 one obtains 

 The circulatory part of the lift at the beginning of the integration Lc(0) represents a constant 
contribution towards the total lift from all vortices shed before time t = 0. This quantity cannot be 
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determined from the vorticity flux and is assumed to be zero. However, this is just an additive constant and 
the integration, carried through a period of oscillation, provides the change in the lift from its value at time t 
= 0; the shape of the lift hysteresis loop remains the same regardless of the starting point of integration. 
 A simplification in equation 1 is that it neglects the effect of the distribution of vorticity around the 
airfoil (region ABCD, figure 1) to the unsteady lift. However, the 'bound vortex' is not fixed at a point; it is 
distributed over the airfoil surface. Such a distribution will also contribute, although by a small amount, to 
the unsteady lift. The simplification is necessary in a practically feasible lift estimation procedure as 
measurement of unsteady vorticity around the airfoil would be extremely difficult. Effect of this simplifica-
tion will be further discussed in the following in connection with equations 2 and 3. A caveat in Equation 1 
is in the original formulation δLc = ρUconvδΓ. Making assumption that the unsteady forces are due to the 
interaction of the shed vortex and the corresponding change in the bound vortex, neglects the interaction of 
the former with the bound vortex itself as well as with all vortices in the wake including the `starting vortex 
complex'. However, the effects due to the interactions of the shed vortex with the latter two vortex systems 
would mostly cancel each other, and thus equation 1 could be a reasonable approximation. But the accuracy 
has remained unclear. Note also that the formulation is equivalent to the application of the Kutta-Joukowski 
theorem to find the differential lift from the differential circulation, albeit using the convection velocity Uconv 
instead of U∞ in the theorem. Of course, the convection velocity in the present context is not a clearly 
defined quantity. As discussed before, Uconv, say for the DSV, varies with streamwise distance. The DSV 
moves slowly when it is near the trailing edge but accelerates farther downstream (Panda and Zaman 1992). 
Thus, the choice of a constant Uconv in equation 1 involves an averaging process.  
 Alternate analyses for the unsteady lift calculation were searched for in the literature. This effort led 
to equations 2 and 3, which are described in the following. It should be emphasized here that all of the analy-
ses considered have simplifications and a foolproof method is not in sight. The exercise in the following 
involves application of equations 1-3 to a given set of uωz(y,t) data to obtain the lift hysteresis loops, which 
are then compared with one another and with other available data to assess the validity of each equation.  
 
 The second equation for Lc(t) is based on the flutter analysis of Theodorsen (1935). In this analysis 
the lift force on an unsteady flat plate is calculated from the instantaneous spatial distribution of vorticity in 
the wake. The wake is considered as a vortex sheet of strength γw per unit streamwise distance and the 
resultant expression for lift, given by Bisplinghoff et al., 1955, can be written in the present notations as 

For the present calculation the spatial vorticity distribution is obtained from the temporal data via Taylor's 
hypothesis yielding γwdx = ∫uωzdydt = ξ1(t)dt; where ξ1 as before, is equal to the vorticity flux ∫ uωzdy, 
which is a function of time. The free stream speed is replaced by the convection speed Uconv to account for 
the slower speed of the large vortices shed during large amplitude oscillation. The distribution of the wake 
vorticity at any instant consists of a combination of vortices shed during many prior complete cycles (-nT to 
0) and a current partial cycle (0 to t). The integration is carried through the partial `wavelength' from the 
trailing edge (corresponding to time 0 to t) and then over ten additional complete `wavelengths' 
(corresponding to time -10T to 0). Increasing the number of complete wavelengths further did not make a 
significant difference in the result. With all these modification the above equation can be written as 
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The spatial location x in equation 2 is obtained by applying Taylor's hypothesis a second time. As in 
equation 1, the term Lc(0) represents the unknown, fixed contribution from all vortices (including the 
`starting vortex complex') in the wake which are not considered in the integral expression. The primary 
difference between equations 1 and 2 is the weighting factor inside the integral of the latter. The weighting 
factor is greater than unity close to the airfoil and quickly decreases to unity for x>c/2. According to Von 
Karman and Sears (1938), who also arrived at Theodorsen's equation starting with F = d/dt(ρxΓ), the weigh-
ting factor arises when the 'bound' vorticity distribution over the airfoil is also taken into account. The 
moment of this vorticity about the airfoil half chord position is non-zero. This makes additional contribution 
to the lift leading to the weighting factor. As discussed earlier, equation 1 does not take such a distribution 
into account (moment of the `bound vortex' about the half chord is assumed to be zero), which also explains 
the absence of the weighting factor in equation 1. One notes that the weighting factor can be expressed in a 
binomial series as  
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Thus the leading term in equation 2 becomes equivalent to equation 1 and the difference between the two 
lies in the contribution from the higher order terms. Another difference between equations 1 and 2 is the 
lower limit of integration. However, when the lower limit in equation 2 was changed to 0 from -10T, the 
difference in the result was negligible (the difference was found to be less than 1% for k = 0.16). 
 Equation 3 is adopted after Wu (1981). Starting with the Navier-Stokes equation Wu derived the 
expression for Lc(t) as 

dydx  ω x   
dt
d ρ = (t) L zC ∫∫  

It states that the force in the y direction (lift) equals the rate of change of the x-moment of all the vorticity in 
the flow field. Note that the above equation is a generalized formulation of the relation, force = d/dt(ρxΓ), 
used to obtain equation 1. 
 The above equation is based on first principles. Thus, if the vorticity distribution over the entire flow 
field were known the forces could be calculated accurately. However, as stated before it would be practically 
impossible to measure all the vorticity especially around the oscillating airfoil. Thus, the following ap-
proximations are needed. The moment of the vorticity distributed over the airfoil, assumed to act at the mid-
chord, is once again neglected. From the measured distribution of ωz(y,t) at a given x, a spatial distribution is 
constructed by invoking the Taylor hypothesis, as was done for equation 2. The unsteady lift, assumed to be 
acting at mid-chord, is then approximated as 
 Similar to equation 2, the position x is obtained by applying Taylor's hypothesis a second time. 
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 Here it should be mentioned that Wu's formulation would also provide drag and pitching moment 
through the rate of change of the quantities ∫∫xωzdxdy and ∫∫xyωzdxdy, respectively. Theodorsen's 
formulations as well as a variation of equation 1 would also enable estimation of pitching moment. In this 
paper, however, we have only covered estimation of the unsteady lift. 
 
Method of calculation: Phase averaged axial velocity <u> and the span wise component of vorticity <ωz> are 
used to evaluate all of the above equations.  With appropriate nondimensionalization, the full expression for 
the periodic variation of the lift coefficient Clc is approximated, say from  equation 1, as  

 .  dt dy >ω< >u<  
c

T U 2 - = (t) Cl ***
z
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The superscript, *, represents non-dimensionalized quantities (lift is nondimensionalized by ½ρU∞
2c, <ωz> 

by U∞/c, y by c and t by T). From the actual discrete measurements of <ωz>*
ij and <u>*

ij (where i = 1,NT and 
j = 1,NY; NT: number of intervals in a cycle and NY: number of y-steps) the above equation at any time step 
n+1, 1≤n≤NT, is evaluated as follows 
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As stated before, Clc(1) is assumed to be zero.  
 As discussed in connection with figure 8, the hot wire measurements in the immediate vicinity of the 
airfoil trailing edge are marked by errors due to occasional flow reversal. On the other hand, implicit in the 
estimation of lift from the unsteady wake survey is the assumption that the vorticity field has not evolved 
significantly by the distance of the measurement station. At a far downstream location, if the time variation 
of vorticity has changed through interaction and evolution, a wrong time history of the forces would be 
estimated. Also implicit in the method is the assumption of two-dimensionality in the flow. At a far 
downstream location three-dimensional effects would set in the flow. Thus the measurement station needs to 
be as close to the airfoil trailing edge as possible. The choice of measurement station is dictated by the 
conflicting requirements; it needs to be close to the trailing edge yet far enough downstream to avoid large 
hot-wire errors. Thus all ωz(y,t) measurements are carried out at xmeas/c = 0.3. This, however, introduces a 
time lag between the instants of measurement and the corresponding `event' taking place over the airfoil. 
This time lag is estimated as, -xmeas/Uconv, and accounted for in the calculation of the lift variation.  

 
`Closing error' and `absolute vorticity flux': An interesting condition arising from the requirement of 
finite lift on the airfoil is that the total change of lift over one complete period of oscillation should be 
zero.  Therefore, the above calculation requires 

.  0 = t∆ y∆ >ω< >u<  *
i

*
j

*
z j i

*
j i

NY

1 = j

NT

1 = i
∑∑  

 Usually, due to measurement errors this condition is not satisfied. This leads to Clc(1) ≠ Clc(NT+1), i.e., 
an unclosed hysteresis loop. For brevity, the deviation of this sum from zero is distributed over the entire 
cycle and only the resulting closed loops are presented in this paper. The `closing error' expressed as 
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is listed in table 1 for all the measurements. The denominator of the above expression represents the sum 
of the absolute values of all vorticity shed in a cycle of oscillation. This is referred to as the `absolute 
vorticity flux' and is also listed in table 1 which will be discussed later in section 4.4.  
 
4.2 Lift variation for α = 0° + 7.2° Sin2πft  
 The unsteady lift variation for this oscillation condition, at k = 0.028 (f = 0.57 Hz) and Rc = 
44,000, was measured with a force balance and also estimated using the above mentioned calculation 
procedures. The force balance data are presented first followed by a comparative evaluation of the 
calculations. 
 
Force balance data: The unsteady lift variation measured by the force balance is shown in figure 10. The 
very low value of k was chosen to minimize harmonic distortions of the load cell signal (section 2). The 
steady state lift variation, also measured by the same force balance is shown by the dashed line. The latter 
shows a kink around α = 0°, which, as discussed in the following, is believed to be due to laminar 
separation at this low operating Reynolds number. Such departure from linear variation due to laminar 
separation has been observed by others (e.g., Mueller and Batill 1982). 
 The unsteady measurements show a hysteresis loop even at this low oscillation frequency. The 
variation in the upper and the lower branches of the loop bear similarities with the steady state lift 
variation. At first sight, the hystersis loop is unexpected, since the dynamic stall phenomenon should not 
appear when the airfoil is oscillated within its static stall limit (Carr 1985). However, it is believed that 
laminar separation is responsible for the hystersis loop in much the same way as for the kink in the steady 
lift variation. For the steady airfoil, the flow remains separated on both surfaces around α = 0° resulting in 
near zero lift (Mueller and Batill 1982; Zaman and McKinzie 1991). Only when the angle of attack is 
increased (or decreased) sufficiently, does the flow reattach on the upper (or lower) surface resulting in 
the increase (or decrease) in lift. For the case of oscillation, the extent of the laminar separation on a given 
surface of the airfoil presumably depends on the direction of motion. In other words, the extent of the 
separation at a given value of α on a given surface of the airfoil during upstroke is different from that 
occurring during down stroke. This apparently causes the observed hystersis loop in the Cl curve. It is 
noteworthy that the flow exhibits the hystersis and has not reached a quasi-steady state even at this low 
frequency of oscillation of 0.57 Hz. 
 
Estimated lift variation: Figures 11(a)-(c) show the lift hysteresis loops constructed from the data of 
figure 9(a) using equations 1-3, respectively. The solid line represents the calculated circulatory part and 
in each figure this is plotted such that the mean Cl at α = 0° matches the corresponding steady state value 
of the Cl. The non-circulatory component is negligible at this low value of k. The lift curves obtained by 
all three equations exhibit hysteresis loops which are essentially similar and differences occur in the 
details. These loops are also very similar to the actual Cl variation of figure 10 and the maximum and 
minimum amplitudes are well represented. This reasonable agreement provides a validation of the lift 
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estimation technique, at least for the small amplitude of oscillation case. That the data for figures 10 and 
11 are for the low Reynolds number case is incidental, and it is believed that the method should work just 
as well at high Re. It should be emphasized here that the data of figure 11 were very sensitive to small 
changes especially in oscillation frequency and in hot-wire calibration. This sensitivity could be partly 
attributed to the laminar separation which is known to be sensitive to the ambient conditions. Also the 
vorticity flux was small and thus accurate measurement was difficult; every time these data were retaken 
there was some difference in the lift hystersis loop. This could explain the differences between the 
estimated loops (Fig. 11) and the actual variation (Fig. 10).  
 
4.3 Lift variation for k = 0.16, α = 15° + 10° Sin (2πft - π/2)  
 The circulatory component of the lift coefficient for k = 0.16 and Rc = 44,000 is shown in figure 
12 (a)-(c) as given by equations 1-3, respectively. The data set of figure 9(b) is used for these results. 
Once again, the predictions are comparable and differences occur mainly where there are steep variations. 
For example, the magnitude of the large drop in the lift around 25° is predicted differently by the different 
equations. Since equation 3 involves differentiation, the resulting curve appears somewhat `jagged'. 
Unfortunately, there is no way to judge at this stage the relative accuracy of these finer differences. 
However, the fact that the predictions are similar for all three equations should be viewed as added 
confirmation that the overall features of the unsteady lift variation have been estimated successfully from 
the wake data. Of the three, equation 1 is perhaps the easiest to follow as it has similarity with the 
equation for steady lift calculation. In the following, further results on the unsteady lift variation for the 
dynamic stall case, obtained by using equation 1, are presented.  
 The circulatory component of Cl from figure 12(a) is added to the corresponding non-circulatory 
component (section 4.1) and the sum is shown in figure 13. The non-circulatory component is shown as 
the superimposed dashed curve which can be seen to be relatively small. The total unsteady Cl of figure 
13 can now be compared with data from the literature. (As discussed before, the data in figure 13 show 
departure from the steady lift, and the Cl values are referenced to the value at α = 5° where it is assumed 
to be zero). Two sets of data for similar values of k are shown in figure 14. The data of McAlister et al. 
(1982), obtained by static pressure distribution measurement, are shown in figure 14(a). Figure 14(b) is 
included from a computational study by L. N. Sankar (private communication; see Wu, Huff and Sankar 
1990), for conditions similar to that in figure 14(a). The overall features of the Cl variation in figure 13 
can be seen to be similar to the data sets of figure 14. The slope of the upper branch (between I and II) 
and the small anti-clockwise loop around α = 25° (between III and IV) in figure 13 are in reasonable 
agreement with the data of figure 14(a). The main difference occurs in the lower branch of the loop. But 
some differences are not unexpected as the lift hysteresis loop is known to be sensitive to other flow 
parameters besides k, e.g. surface roughness, aspect ratio etc. The Reynolds number Rc was also quite di-
fferent between the two experiments (4.4x104 in the present case as opposed to 4.8x105). The undulations 
on the lower branch, however, have been observed in other experiments (Leishman 1990), and can also be 
observed in the computational result shown in figure 14(b). 
 
Lift hystersis loop vis-à-vis measured vorticity: The variations in the lower branch of the lift hysteresis 
loop, as discussed above, are believed to be real and due to the passage of the successive vortices 
following the DSV. In fact, the present way of estimating the lift provides a unique opportunity to relate 
various features of the hysteresis loop with the different vortical structures observed through the vorticity 
maps and the flow visualization. As discussed earlier, for the case under consideration, nearly all the 
positive (clockwise) vorticity generated from the airfoil suction surface accumulates to form the DSV 
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during the upstroke (between points I and II in figures 9b and 13). This is reflected in the wake as a 
depletion of positive vorticity. But the negative vorticity generated from the pressure surface is shed in 
the wake as usual. Qualitatively, a large negative vorticity in the wake is equivalent to a `starting vortex' 
and a large positive vorticity is equivalent to a `stopping vortex'. When the former is shed, circulation 
around the airfoil as well as lift increases, while shedding of the latter causes a drop in the lift. Thus, 
between points I and II the airfoil lift increases and between points II and III, when the DSV containing 
positive vorticity is shed, the lift drops. The rebounding of the lift near the highest angle of attack during 
the down stroke (III to IV) is due to the shedding of the trailing edge vortex which contains a 
concentration of negative vorticity. The undulations in the lower branch of the hysteresis loop occur due 
to the passage of a few more, relatively weaker positive and negative vortices following the DSV and the 
TEV (IV to I). Further comparison of the lift hystersis with corresponding <ωz>* data for other values of k 
are given in the next section.  
 
4.4 Vorticity and lift hysteresis at different k and αa  
 In order to study the parametric dependence of the dynamic stall and the corresponding lift 
hysteresis, the <ωz>(y,t) distributions were measured and the lift hysteresis loops were computed for 
different values of reduced frequency k and amplitude αa. Figure 15(a) shows vorticity data for various k 
similar to the data presented in figure 9.  
 The `closing error' and the `absolute vorticity flux' for the data of figures 9 and 15(a), as well as a 
few other sets not presented here, are tabulated in table 1. Referring back to section 4.2, recall that the 
closing error represents the difference between the first and the last point over a period in the computed 
Cl variation. This difference should be zero, which physically signifies the fact that the amounts of 
positive and negative vorticity convected into the wake over an oscillation cycle should be the same so 
that the net amount is zero. Due to measurement errors, however, the lift values computed from the <ωz>* 
data do not return to the original value at the end of the cycle resulting in the unclosed loop. It should be 
emphasized that this is a cumulative error integrated over the entire period for all the data. Thus, even 
though some of the numbers for the closing error in table 1 are in the double digits, in view of the co-
mplexity of the measurements, these should be considered as small.  
 An interesting observation can be made from the `absolute vorticity flux' data of table 1. This 
quantity represents twice the amount of the positive (or absolute negative) vorticity, shed into the wake 
over the period. It is seen to be approximately a constant (with appropriate nondimensionalization), and 
independent of k, Rc and αa but dependent on αmean. The size, shape and the sequence of formation of the 
various vortices vary depending on the oscillation parameters but the net amount of positive or negative 
vorticity carried by all such vortices in one oscillation cycle do not change significantly. Therefore, when 
the oscillation frequency and amplitude are changed, the vorticity generated from the airfoil surface is 
simply redistributed over the period. When αmean is changed, however, the amount of positive or negative 
vorticity shed over the period is found to change considerably. This change occurs presumably because 
the mean pressure gradients near the leading edge and around the airfoil are changed when αmean is 
changed. Since the pressure gradients are the primary source terms for the span wise component of 
vorticity (Reynolds and Carr 1985), the observed change in the vorticity generation is qualitatively 
accounted for.  
 The lift hysteresis loops corresponding to the <ωz>* data of figure 15(a) are shown in figure 15(b). 
Again, the solid lines represent the sum of both `circulatory' and `noncirculatory' parts while the dashed 
lines show the latter only. The Cl data can be discussed in comparison to the corresponding <ωz>* data. 
For the lowest k (= 0.05), the dynamic stall vortex is not well developed and the airfoil behaves in a 
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quasi-steady manner (Panda and Zaman, 1992). The <ωz>* data show a thick wake for most of the 
oscillation cycle indicating a stalled flow. The resulting lift hysteresis loop is also very small. The 
unsteady effects become prominent as k is increased above 0.1. Between k = 0.16 and 0.4 the main featu-
res of the <ωz>* distribution, viz. the thinner wake with stronger negative vorticity followed by the DSV 
and the TEV, are quite similar except for a progressive phase shift in the appearance of the vortices with 
increasing k. This is the same phase delay as discussed in section 3.1. At k = 0.16 (for which <ωz>* data 
are in figure 9b), the DSV and the TEV are shed before αmax (t/T > 0.5). This results in the small counter-
clockwise loop at the lower right corner. At k = .2 the lift increases throughout the upstroke, dropping 
near αmax when the DSV is shed, and the resulting lift curve has only one large loop. As k is increased 
beyond 0.2, the lift keeps on increasing beyond αmax when the angle of attack is actually decreasing. For k 
≈ 0.3 the sudden drop in Cl, associated with the shedding of the DSV, appears in the middle of the down 
stroke. Therefore the k = 0.3 and 0.4 cases show a second loop around αmax. A very similar sequence of 
change in the appearance of the lift hysteresis curve was also measured by Carr et al. (1977), in the range 
0.1<k<.25, from static pressure distribution data. However, the present data, allowing direct comparison 
of the lift variation with the vortices in the flow field, make it amply clear that the observed changes in 
the lift hysteresis are mainly due to the phase delay in the appearance of various vortices as k is increased. 
 With increasing k, the sequence of events becomes more complex. The <ωz>* distributions appear 
progressively different. At k = 0.8 multiple pairs of vortices are found to be distributed over the entire 
period. The resulting Cl versus α curve for k = 0.8 exhibits three loops. The noncirculatory component, 
shown by the dashed curves in figure 15(b), can be seen to grow in amplitude with increasing k and 
becomes the dominant contributor to the unsteady lift for k values above about 0.8.  
 Finally, in figure 16 a set of data are presented for varying amplitudes of oscillation with αmean ≈ 
15°. The corresponding <ωz>* data are not shown for brevity, but some of the corresponding features are 
listed in table 1. Data for k = 0.2 and 0.4 are shown for two amplitudes each. Corresponding data for the 
intermediate amplitude have been shown in figure 15. It becomes clear that the overall shapes of the 
hysteresis loops remain similar, only the size of the loop increases with an increase of amplitude. This is 
in general agreement with the data of Leishman (1990). However, Ohmi et al. (1990) observed that at 
very high k the effect of increasing αa was equivalent to a decrease in k and vice versa. For the present 
data, the variation in the Cl loop for the four cases of figure 16 agrees with the sequence of events seen in 
the vorticity data. Limited flow visualization also indicated that the sequence of DSV and TEV and the 
phase delay in their shedding remain essentially unaltered with varying amplitude for a given k.  
 
5. Concluding remarks  
 The significant observations and conclusions of the present study are enumerated in the following.  
 (1) In addition to the well known dynamic stall vortex (DSV) formed near the leading edge, an 
intense vortex of opposite sense is observed to form near the trailing edge (TEV) just when the DSV is 
shed. The combined DSV and TEV grow to a very large size and take the shape similar to the cross 
section of a `mushroom' as they convect away from the airfoil. For values of k in the range 0.2 - 0.4, the 
transverse extent of the `mushroom' structure measures about three chords just three chords downstream 
of the trailing edge. At large k the flow fields are complex, for example, at k = 1.6, the `mushroom' 
structure becomes inverted and two DSV's are observed to reside over the suction surface during part of 
the oscillation cycle.  
 The phase delay in the shedding of the DSV is found to vary approximately linearly with varying 
k over the full range of k covered in the experiment.  
 (2) The flow field is documented in detail using the phase averaging technique. The measured 
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evolution of the vorticity field over a cycle agrees well with the flow visualization photographs.  
 It is observed that the sum of either all clockwise or all counter-clockwise vorticity convected into 
the wake over a cycle is nearly constant and is independent of the reduced frequency and amplitude of 
oscillation but dependent on αmean. As expected, the sum of all vorticity shed over the cycle is found to be 
nearly zero. 
 (3) A new method of estimating the unsteady component of lift from the vorticity flux measured in 
the wake is presented. The `circulatory' component of the lift is estimated as Lc = density x Uconv x 
cumulative vorticity flux shed by the airfoil from the beginning of an oscillation period, where Uconv is an 
average convection velocity. The analytical foundation of this method is discussed and alternate equations 
with different approximations are considered. The `non-circulatory' component is determined using 
Theodorsen's analysis. It is found that the estimated lift hysteresis loops compare well with limited force 
balance data for small oscillation amplitude with αmean = 0°. Direct comparison was not possible for the 
dynamic stall case, but the estimated lift variation showed reasonable agreement with data from the 
literature. Assumptions of two-dimensionality of the flow and insignificant evolution of the vorticity field 
are implicit in the estimation. From both of these considerations the measurement station should be as 
close to the airfoil trailing edge as possible. Possible application of this method to three-dimensional flow 
will require more research. However, even if approximate the method is a novel one and could be of 
interest in similar experiments in the future as the lift hysteresis loop is obtained strictly from wake 
surveys without direct force or static pressure distribution measurements.  
 (4) By comparing various features of the lift hysteresis loop with the corresponding vorticity fields 
and the flow visualization photographs, the following observations are made for a low k case: (a) The 
large lift occurring during the formation of the DSV is associated with an accumulation of positive 
vorticity on the airfoil upper surface and a depletion of the same in the wake. (b) As observed by previous 
investigators, the sudden drop in the lift occurs when the DSV leaves the airfoil surface. (c) The 
rebounding of the lift following the sudden drop is caused by the passage of the TEV. (d) Small oscil-
lations seen in the lower branch of the hysteresis loop, also observed in a computational study cited in the 
text, are due to the generation and shedding of several smaller vortices following the DSV and the TEV.  
 (5) Hysteresis loops in the Cl vs. α curve are constructed for several values of the reduced 
frequency in the range 0.05≤k≤1.6 using the method based on the wake survey. It is found that certain 
major features of the lift hysteresis at various k can be linked to the phase delay in the shedding of the 
DSV.  For k < 0.2 the DSV is shed before αmax is reached causing a small counter-clockwise loop at the 
lower right corner of the larger clockwise loop. At k = 0.2 the lift increases throughout the upstroke until 
the DSV is shed around αmax resulting in a lift curve that has a single clockwise loop. For larger values of 
k the lift keeps on increasing beyond αmax, as the shedding of the DSV is delayed, resulting in a second 
counter-clockwise loop at the top right corner. With a further increase in k the hysteresis loops become 
increasingly more complex due to the multiple vortical structures involved in those cases.  
     While the `non-circulatory' component is small and negligible at low k, it becomes progressively 
larger with increasing k and for the case studied becomes the dominant one for k > 1.  
  Varying the amplitude of oscillation for a given k did not change the shape of the hysteresis loop, 
only the size varied proportionate to the amplitude. 
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 Table 1. `Closing error' and 'absolute vorticity flux' for different cases. 
 
 α  Rcx10-3  k %closing 

error  |  >< >u<|  *
z ij

*
ij ω∑∑

absolute vorticity flux 

 44 .05  -1.26 1.03 

  44  .1  -4.03  .95 

  44  .16   4.04   .94 

15.3°±9.7°  44  .2   2.78   .93 

  44  .4   1.83  .95 

  22  .4   1.66  1.02 

  22  .6   11.9  1.03 

  22  .8   3.8  1.1 

  22  1.2   3.8  1.0 

 
 15.7°±7.2° 

 44  .2   13.3  .85 

  44  .4   9.1  1.07 

  
14.1°±14.1° 

 44  .2   8.5  .88 

  44 .4   15.7  1.04 
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 0°±7.2° 

 44  .036   7.9  .34 

  44  .028   1.6  .34 
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Fig. 2 Smoke-wire flow visualization photographs at different phases of the oscillation cycle; k = 0.2, α = 
15°+ 10°sin2πft. Approximate α for pictures a to j are 5°u, 14°u, 20°u, 22°u, 24°u, 25°u, 25°d, 20°d, 
16°d, 12°d; "u" and "d" denote increasing and decreasing α. 
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